Global Cooling: Increasing World-wide Urban Albedos to Offset CO_{2}

Hashem Akbari
Heat Island Group

Ernest Orlando Lawrence Berkeley National Laboratory

Tel: 510-486-4287
E_mail: H_Akbari@LBL.gov http://Heatlsland.LBL.gov

Fifth Annual California Climate Change Conference, Sacramento, CA 9 September 2008

Acknowledgement

- The study was funded by CEC/PIER, program manager: Guido Franco
- Co-authors:
> Prof. Arthur Rosenfeld, Commissioner, CEC
> Dr. Surabi Menon, Staff Scientist, LBNL

Cool Roofs, Cool Pavements, and Shade Trees Save Energy and Improve Air Quality

Cool Surfaces also Cool the Globe

- Cool roofs, cool pavements, and shade trees save energy, improve air quality, and improve comfort; we estimate savings of > \$50B/year
- But higher albedo surfaces (roofs and pavements) directly cool the globe, quite independent of avoided CO_{2}

The Earth's Radiation Budget

Source: Kiehl and Trenberth, 1997

Methodology

- Changing albedo of urban surfaces and changing atmospheric CO_{2} concentrations both result in a change in radiative forcing (RF)
- Comparing these two radiative forcings relates changes in solar reflectance of urban surfaces to the changes in atmospheric CO_{2} content

Caveats

- Time dependence of physical effects (e.g., sequestration in land or ocean) and economics are ignored
- We account for the effect of multiple scattering and absorption of radiation within the atmosphere
- Calculations are performed for the entire globe

Radiation Forcing of $2 \mathrm{XCO}_{2}$

- Hansen et al (2005) estimate a $2 \mathrm{XCO}_{2}$ radiative forcing (RF) on the top of the atmosphere of $3.95 \pm 0.11 \mathrm{~W} / \mathrm{m}^{2}$, yielding a RF of $0.93 \pm 0.03 \mathrm{~kW} /$ tonne of atmospheric CO_{2}
- IPPC [based on Myhre (1998) formula] estimate a RF of 3.71 W/m², yielding a RF of 0.88-0.91 kW/tonne of atmospheric CO_{2}
- Matthews and Caldeira (2008) found a 0.175 K temperature increase for every 100 GtC emitted, yielding a $0.47 \mathrm{~kW} /$ tonne of atmospheric CO_{2}
- We use a RF of $0.91 \mathrm{~kW} /$ tonne of atmospheric CO_{2}

Radiation Forcing of Cool Surfaces

- Hansen et al (1997) estimate a RF of -3.70 Wm^{-2} for increasing the albedo of 'Tropicana' by 0.2. We estimate that Tropicana is 22% of the land area or about $1 / 16^{\text {th }}$ of the global surface. For reflective surfaces, the RF per 0.01 increase in albedo is $-2.92 \mathrm{~W} /\left(\mathrm{m}^{2}\right.$ of Tropicana land)
- Using Kiehl and Trenberth (1997) and Hatzianastassiou et al (2005), we calculate a RF of $-1.27 \mathrm{~W} / \mathrm{m}^{2}$ per 0.01 increase in albedo of modified surfaces
- Note that our calculations apply for the average cloud cover over the earth; we estimate higher RF for CA

CO_{2}-Equalence of Reflective Surfaces

- RF of increasing atmospheric $\mathrm{CO}_{2}=0.91 \mathrm{~kW} /$ tonne $=0.91 \mathrm{~W} / \mathrm{kg}$
- RF of increasing solar reflectance of a surface by 0.01
$=-1.27 \mathrm{~W} / \mathrm{m}^{2}$
- Atmospheric CO_{2}-equalence of increasing solar reflectance of a surface by $0.01=-1.27\left[\mathrm{~W} / \mathrm{m}^{2}\right] / 0.91[\mathrm{~W} / \mathrm{kg}]$
$=-1.40 \mathrm{~kg} / \mathrm{m}^{2}$
- IPCC (2007) estimates that only 55% of the emitted CO_{2} stays in the atmosphere
- Emitted CO_{2}-equalence of increasing solar reflectance of a surface by $0.01=-1.40\left[\mathrm{~kg} / \mathrm{m}^{2}\right] / 0.55=-2.5 \mathrm{~kg} \mathrm{CO}_{2}$ per m${ }^{2}$.

GCM Simulations (GEOS-5)

Mean: Total Albedo: ModAlb - GEOS5

CO_{2} Offset of Cool Roofs and Cool Pavements

- Δ albedo for aged white roofs $=0.40$
- Emitted CO_{2} offset for white roofs
$=[0.40 / 0.01]^{*}\left[-2.5 \mathrm{~kg} \mathrm{CO}_{2} / \mathrm{m}^{2}\right]=-100 \mathrm{~kg} \mathrm{CO} 2 / \mathrm{m}^{2}$
- It takes about $10 \mathrm{~m}^{2}$ of white roof to offset $1 \mathrm{TCO}_{2}$ emitted
- Δ albedo for typical residential and non-residential cool roofs $=0.25$
- Emitted CO_{2} offset for cool roofs
$=[0.25 / 0.01]^{*}\left[-2.5 \mathrm{~kg} \mathrm{CO}_{2} / \mathrm{m}^{2}\right]=-63 \mathrm{~kg} \mathrm{CO} 2 / \mathrm{m}^{2}$
- Δ albedo for cool pavement $=0.15$
- Emitted CO_{2} offset for cool pavements $=-38 \mathrm{~kg} \mathrm{CO} 2 / \mathrm{m}^{2}$

Dense Urban Areas are 1\% of Land

- Area of the Earth $=508 \times 10^{12} \mathrm{~m}^{2}$
- Land Area (29\%) $=147 \times 10^{12} \mathrm{~m}^{2}$
- Area of the 100 largest cities $=0.38 \times 10^{12} \mathrm{~m}^{2}$
$=0.26 \%$ of Land Area for 670 M people
- Assuming 3B live in urban area, urban areas
$=$ [3000/670] $\times 0.26 \%=1.2 \%$ of land
- But smaller cities have lower population density, hence, urban areas $=2 \%$ of land $=3 \times 10^{12} \mathrm{~m}^{2}$
- Dense, developed urban areas only 1% of land $=1.5 \times 10^{12} \mathrm{~m}^{2} \quad\left(1.5 \mathrm{M} \mathrm{km}^{2}\right)$

CO_{2} Equivalency of Cool Roofs and Pavements

- Typical urban area is 25% roof and 35% paved surfaces
- Roof area $=0.25^{*} 1.5 \times 10^{12} \mathrm{~m}^{2}=3.8 \times 10^{11} \mathrm{~m}^{2}\left(0.38 \mathrm{M} \mathrm{km}^{2}\right)$
- Emitted CO_{2} offset for cool roofs

$$
=63 \mathrm{~kg} \mathrm{CO}_{2} / \mathrm{m}^{2} * 3.8 \times 10^{11} \mathrm{~m}^{2}=24 \mathrm{GT} \mathrm{CO} 2
$$

- Paved area $=0.35 * 1.5 \times 10^{12} \mathrm{~m}^{2}=5.3 \times 10^{11} \mathrm{~m}^{2}\left(0.53 \mathrm{M} \mathrm{km}^{2}\right)$
- Emitted CO_{2} offset for cool pavements $=38 \mathrm{~kg} \mathrm{CO} 2 / \mathrm{m}^{2} * 5.3 \times 10^{11} \mathrm{~m}^{2}=20 \mathrm{GT} \mathrm{CO} 2$
- Total emitted CO2 offset for cool roofs and cool pavements $=44 \mathrm{GT} \mathrm{CO} 2$

CO_{2} Equivalency of Cool Roofs and Pavements (cntd.)

- $44 \mathrm{GT} \mathrm{CO}_{2}$ is over one year of the world 2025 emission of $37 \mathrm{GT} \mathrm{CO}_{2}$
- At a growth rate of 1.5% in the world's CO_{2} equivalent emission rate, $44 \mathrm{GT} \mathrm{CO}_{2}$ would offset the effect of the growth in CO_{2}-equivalent emissions for 11 years

Equivalent Value of Avoided CO_{2}

- CO_{2} emissions currently trade at $\sim \$ 25$ /tonne
- 44 GT worth $\$ 1100$, for changing albedo of roofs and paved surface
- Cooler roofs alone worth \$600B
- Cooler roofs also save air conditioning (and provide comfort) worth several times \$600B

A Global Action Plan: The big picture

- Develop a United Nation program to install cool roof/pavement in 100 largest cities
- This is a simple measure that we hope to organize the world to implement AND
- WE BETTER BE SUCCESSFUL!
- We can gain practical experience in design of global measures to combat climate change

Conclusion

$1000 \mathrm{ft}^{2}$ of a white roof，replacing a dark roof，劓 offset the emission of 10 tonnes of CO_{2}谓畳

References

- Hansen et al. 1997: J Geophys Res, 102, D6(6831-6864)
- Myhre et al. 1998: Geophys Res Let, 25, 14(2715-2718)
- Hansen et al. 2005: J Geophys Res, 110, D18104.
- Hatzianastassiou et al. 2005: Atmos. Chem. Phys., 5, 2847-2867.
- IPCC. 2007: (Chap. 7, Fig. 7.4 and Sec. 7.3.2.1) (pp. 516-517)
- Kiehl and Trenberth. 1997. Bull. Am. Meteo. Soc, 78, 2 (197-208).
- Matthews and Caldeira. 2008. Geophys Res Let, 35, L04705.
- Akbari et al. 2008: Climatic Change, In press

Cooler Cities as a Mirror

- Mirror Area $=1.5 \times 10^{12} \mathrm{~m}^{2}[5] *(0.1 / 0.7)[\delta$ albedo of cities/ δ albedo of mirror]
$=0.2 \times 10^{12} \mathrm{~m}^{2}=200,000 \mathrm{~km}^{2}$ \{This is equivalent to an square of 460 km on the side\}
$=10 \%$ of Greenland

= 50\% of California

